Redox Stability Of Anode Supported Solid Oxide Fuel Cells
Thanks to the redox couple present in the electrolyte, electrons can be transported from the cathode’s surface to recombine with the “holes” of the oxidized dye molecules, closing the regeneration loop. This light-induced cycle can then restart all over again, as the solar cell produces electricity. Oxygen evolution reaction is a crucial reaction for many energy technologies such as high efficiency water electrolyzers, or photo-driven water splitting, regenerative fuel cells, and advanced rechargeable metal-air batteries. Accordingly, high performance catalysts are urgently needed to speed up the OER, lower the high overpotential required to drive the reaction and reduce the energy consumption. So-called supercapacitors store electrostatic charge in the form of ions, rather than electrons, on the surfaces of materials with high specific areas (m2/g).
- Using TiO2-based hybrid materials as the active materials.
- Unfortunately, it was soon realized that using lithium as an anode material lower the performance of the batteries