Targeting Individual Atoms

Targeting Individual Atoms

This workshop follows the submission of a community letter, which outlined the intention to organise a community workshop is to discuss options for a quantum technology development programme coordinated at the Europe-wide level. An even more mysterious form of energy called “dark energy” accounts for about 70% of the mass-energy content of the universe. This idea stems from the observation that all galaxies seems to be receding from each other at an accelerating pace, implying that some invisible extra energy is at work. Phillips, “Laser cooling and trapping of neutral atoms”, Rev. Mod. Ashkin, “Acceleration and trapping of particles by radiation pressure”, Phys. The process described above should therefore be seen as the fission of an incoming photon from the laser into a pair of photon and phonon – akin to nuclear fission of an atom into two smaller pieces.

  • Naturally, further development is necessary before it could be used in commercial applications.
  • Beside the PSI the Max Planck Institute for Quantum Optics and CERN are involved in the PiHe collaboration.
  • As a result, they were able to keep the influence of their observation so small as to not influence the system measurably, leaving the original circular motion perceptible.
  • In Basel, the group continues its research in the field of quantum optics and ultracold atoms.
  • The gold nano-antenna also amplifies the very faint light scattered by the newly formed atomic defects, making it visible to the naked eye.

We also perform density functional theory calculations to elucidate the physical origins of the contrast observed. The calculations reveal that the Pauli repulsion is the source of the atomic resolution and yield insights into the important role of the tip functionalization . Astronomical and physical calculations suggest that the visible universe is only a tiny amount (4%) of what the universe is actually made of. A very large fraction of the universe, in fact 26%, is made of an unknown type of matter called “dark matter”.

By a precise arrangement of the experiment, they ensured that not even the faintest trace of the light-vibration pair creation time (t1 vs. t2) was left in the universe. Quantum mechanics then predicts that the phonon-photon pair becomes entangled, and exists in a superposition of time t1andt2. This prediction was beautifully confirmed by the measurements, which yielded results incompatible with the classical probabilistic theory. Researchers at ETH Zurich and the Karlsruhe Institute of Technology are exploring a fundamentally new type of microchip that works with single-atom switches. The new chip will be 100 times smaller than standard CMOS chips, yet able to process at least as much data while consuming much less energy.

In Basel, the group continues its research in the field of quantum optics and ultracold atoms. The unexpected findings raise new questions about the exact microscopic mechanisms by which a weak continuous green light can put some gold atoms into motion. “Answering them will be key to bringing optical nano-antennas from the lab into the world of applications – and we are working on it,” says Wen Chen, the study’s first author. In the new study, EPFL researchers managed to entangle the photon and the phonon (i.e., light and vibration) produced in the fission of an incoming laser photon inside the crystal. To do so, the scientists designed an experiment in which the photon-phonon pair could be created at two different instants. Classically, it would result in a situation where the pair is created at time t1 with 50% probability, or at a later time t2 with 50% probability.

The Microchip Of The Future

This nanoscale dance of atoms can thus be observed as orange and red flashes of fluorescence, which are signatures of atoms undergoing rearrangements. The gold nano-antenna also amplifies the very faint light scattered by the newly formed atomic defects, making it visible to the naked eye. In recent decades, NMR spectroscopy has made it possible to capture the spatial structure of chemical and biochemical molecules.

atoms

Such superpositions are hard to create, as they are destroyed if any kind of information about the place and time of the event leaks into the surrounding – and even if nobody actually records this information. But when superpositions do occur, they lead to observations that are very different from that of classical physics, questioning down to our very understanding of space and time. Scientists from EPFL, MIT, and CEA Saclay demonstrate a state of vibration that exists simultaneously at two different times. They evidence this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration. Jürg Leuthold wasn’t interested in taking over his father’s textile factory—a good thing for modern telecommunications. In his work as a physicist, Leuthold develops innovative technologies that haven’t just caught the attention of the global tech community—they’ve been further developed and are now standard elements in everyday devices.

The Power Of A Single Atom

As an intense source of slow cesium atoms”, Eur. Phys. J., Appl. Phys. 34, 21 . An especially counter-intuitive feature of quantum mechanics is that a single event can exist in a state of superposition – happening bothhereandthere, or bothtodayandtomorrow. The minuscule chip has the potential to revolutionise the semi-conductor industry. Moreover, the energy the technology saves could be channelled into boosting the performance of next-generation computers. A close-up of the single-atom switch is found further down in the text.

Unlike stars and galaxies, dark matter does not emit any light or electromagnetic radiation of any kind, so that we can detect it only through its gravitational effects. In the first moments after the Big Bang, the universe was extremely hot and dense. As the universe cooled, conditions became just right to give rise to the building blocks of matter – the quarks and electrons of which we are all made. A few millionths of a second later, quarks aggregated to produce protons and neutrons. As the universe continued to expand and cool, things began to happen more slowly.

In their experiments, they use microstructured “atom chips” to laser-cool, trap, and coherently manipulate clouds of ultracold atoms. Using tailored magnetic potentials generated by current-carrying wires on the chip, they perform experiments on the quantum physics of atomic Bose-Einstein condensates . In particular, they investigate many-particle entangled states of the BECs and their possible application in quantum metrology and quantum information processing. Furthermore, they use the atoms as sensitive probes for electromagnetic fields near the chip surface and to study the dynamics of on-chip solid-state systems such as tiny mechanical oscillators.

We discovered and characterized reversible switches based on bond formation between a metal atom and a molecule , cyclization in radicals and switching atomic charge states and adsorption geometries . In addition to conducting applied research for developing the novel, energy-efficient transistor, the team are also exploring fundamental questions in physics. For instance, they have observed that a single atom’s conductivity is not a fixed quantity; rather, it depends on the atom’s environment and its structural organisation in a collective with other atoms.

Comments are closed.