Targeting Individual Atoms

Targeting Individual Atoms

“I wanted to find answers to fundamental questions, and I wanted to know what holds the world together. Minimal electrical voltage is used to slip a single atom between a silver and a platinum pad, causing a digital signal to be emitted. To begin its work, the Centre of Atomic Scale Technologies is using initial Foundation funding to create 14 positions for PhD candidates and postdocs, and to purchase additional equipment to analyse and optimise nano-components. Hubble’s discovery was the first observational support for Georges Lemaître’s Big Bang theory of the universe, proposed in 1927. Lemaître proposed that the universe expanded explosively from an extremely dense and hot state, and continues to expand today. Subsequent calculations have dated this Big Bang to approximately 13.7 billion years ago.


Each pair of neighboring atoms oscillated like two masses linked by a spring, and this oscillation was synchronous across the entire illuminated region. To conserve energy during this process, a light of a new color is emitted, shifted toward the red of the spectrum. Standard chips are energy guzzlers compared to the single-atom optical switch. In an effort to circumvent this limitation, researchers are engineering metallic nano-antennas that concentrate light into a tiny volume to dramatically enhance any signal coming from the same nanoscale region. Nano-antennas are the backbone of nanoplasmonics, a field that is profoundly impacting biosensing, photochemistry, solar energy harvesting, and photonics.

Review Article On Entanglement And Quantum Metrology With Atomic Ensembles

The results of the PiHe experiment so far are therefore an intermediate step on the way to an even more precise determination of the mass of the pion. This new experiment requires a lower density target to study the collision effects caused by other helium atoms, and other, more narrow atomic transitions will be also probed by the PiHe collaboration. It was in 1947 when the British physicist Cecil Powell and colleagues discovered a new particle – the pion – in the upper earth’s atmosphere. This particle is created when cosmic rays from the vastness of the universe hit the Earth’s atmosphere. Three years after the discovery of the pion, Powell received the Nobel Prize.

  • Philipp Treutlein was recently appointed as a tenure-track assistant professor in the Department of Physics at the University of Basel.
  • More recently, atoms were used for the high-resolution imaging of static magnetic and electric fields near a chip surface .
  • A key factor here is the nuclear spin, which can be compared with the spinning of a child’s top.
  • Schimmel is considered a pioneer in single-atom electronics; in his Karlsruhe lab, he invented a mind-bogglingly efficient single-atom transistor that could significantly lower energy consumption in computers.

Scientists at EPFL discover that laser-driven rearrangement of just a few gold atoms inside nanoscale antennas can be observed by the naked eye. This community workshop will build upon one organised two years ago , which also reviewed the cold atom experiment landscape for space. This event will bring together the cold atom, astrophysics, cosmology, fundamental physics, and earth observation communities to shape this development programme. Quantum systems are hard to pin down, as any measurement will also influence the system being observed. Therefore, the researchers were unable to track the precession continuously; its movement would have been changed too drastically.

Particle Physicists Create Artificial Atoms For Research Purposes

One aspect that has proven a major challenge is the manufacture of tiny, atomic-scale wires. Moreover, the production steps in making the atomsized transistors are complex and demanding, meaning that Leuthold, Schimmel and their teams are experimenting with a wide range of materials and geometries. In the computers of tomorrow, millions of single atoms will be performing this dance to transmit signals.

The resulting flow of electricity can be used to power common electronic devices—for example, a halogen lamp, as Schimmel has demonstrated in his Karlsruhe lab. In our experiment , the microwave field to be imaged drives a transition between two hyperfine states of the atoms. The probability of finding an atom in either state thereby oscillates with a Rabi frequency which depends on the local microwave field strength at the position of the atom.

To solve this problem, they developed a special measurement method to capture the spin of the carbon atom through a series of weak measurements in quick succession. As a result, they were able to keep the influence of their observation so small as to not influence the system measurably, leaving the original circular motion perceptible. The technique is based on nuclear magnetic resonance, which takes advantage of the fact that certain atomic nuclei interact with a magnetic field. A key factor here is the nuclear spin, which can be compared with the spinning of a child’s top.

Comments are closed.