Green Light On Gold Atoms

Green Light On Gold Atoms

The research alliance between Zurich and Karlsruhe is now united in the new Centre of Atomic Scale Technologies. Although the collaboration has only recently begun, the research groups involved were predestined for the task at hand. Thomas Schimmel is a pioneer of electronic circuits at the level of the atom, and Jürg Leuthold has demonstrated in his past research that photonic switches are possible at the atomic level. Moreover, Leuthold was the first researcher able to place both optical and electronic switching elements on the same chip. The tiny chip is also a modulator that can transform electrical signals into light signals and vice-versa—an extremely useful feature for transmitting data in fibre optic cables.

  • Ultracold atoms react very sensitively to applied electromagnetic fields.
  • In the first moments after the Big Bang, the universe was extremely hot and dense.
  • We discovered and characterized reversible switches based on bond formation between a metal atom and a molecule , cyclization in radicals and switching atomic charge states and adsorption geometries .
  • Compact and portable systems for the preparation of ultracold atoms have been built , and key components of such systems are now commercially available.
  • In recent years, significant progress has been made along these lines.

It took 380,000 years for electrons to be trapped in orbits around nuclei, forming the first atoms. These were mainly helium and hydrogen, which are still by far the most abundant elements in the universe. Present observations suggest that the first stars formed from clouds of gas around 150–200 million years after the Big Bang. Heavier atoms such as carbon, oxygen and iron, have since been continuously produced in the hearts of stars and catapulted throughout the universe in spectacular stellar explosions called supernovae. He grew up in rural Toggenburg, in eastern Switzerland, where his father owned a textile factory in the Neckertal region. As a child, Leuthold paid close attention when the repairman serviced the machines, and he took over this task when he was a teenager.

Base Breaks New Ground In Matter

For our experimental parameters, the method provides a microwave magnetic field sensitivity of ~ 2 × 10-8 T and a spatial resolution of 8 µm, which both can be improved even further with trapped Bose-Einstein condensates . The goal is to have all key components of the atomic microchip ready by 2021. “It’s an ambitious schedule, but the three research groups are committed to succeeding,” Leuthold says. Nevertheless, quite a few factors in the research field depend on smaller and larger breakthroughs—and breakthroughs are notoriously difficult to predict.


Our research combines experiment with theory, employing techniques of atomic physics, quantum optics and optomechanics. A common goal of our activities is to investigate quantum physics in systems of increasing size and complexity. In the laboratories of modern physics the elementary components of matter are studied. To do this, scientists sometimes build artificial atoms to help them understand the laws of matter. A research team at the Paul Scherrer Institute (Villigen/AG) uses a specifically modified helium atom to determine the exact mass and other properties of pions. Pions could help to understand more precisely where atomic nuclei get their mass from.

Revolutionary Single

Unlike stars and galaxies, dark matter does not emit any light or electromagnetic radiation of any kind, so that we can detect it only through its gravitational effects. In the first moments after the Big Bang, the universe was extremely hot and dense. As the universe cooled, conditions became just right to give rise to the building blocks of matter – the quarks and electrons of which we are all made. A few millionths of a second later, quarks aggregated to produce protons and neutrons. As the universe continued to expand and cool, things began to happen more slowly.

Particle Physicists Create Artificial Atoms For Research Purposes

For instance, when sending signals from a cell phone or a computer, the nano-components can be transformed into optical signals, which are reverted to their original form when received. If the nano-components are shunted by the million, they could make a major contribution to dealing with the continually increasing flow and ever-faster transmission of data in the internet. A microchip that is 100 times smaller and 100 times more energy efficient—this is the stated goal of the research team at the Centre of Atomic Scale Technologies, which has received funding from the Werner Siemens Foundation since 2017. Already after a short year’s work, the ambitious goal no longer seems utopian. Indeed, the step from lab prototype to mass production is a major challenge and numerous issues must first be resolved. Of particular importance is how single-atom transistors can be switched simultaneously on a large scale in order to perform the logical operations required of a computer chip.

Each pair of neighboring atoms oscillated like two masses linked by a spring, and this oscillation was synchronous across the entire illuminated region. To conserve energy during this process, a light of a new color is emitted, shifted toward the red of the spectrum. Standard chips are energy guzzlers compared to the single-atom optical switch. In an effort to circumvent this limitation, researchers are engineering metallic nano-antennas that concentrate light into a tiny volume to dramatically enhance any signal coming from the same nanoscale region. Nano-antennas are the backbone of nanoplasmonics, a field that is profoundly impacting biosensing, photochemistry, solar energy harvesting, and photonics.

Comments are closed.